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Introduction  

When a material is elastic, it returns to the same state (at macroscopic, 

microscopic and atomistic levels) upon removal of all external load 

Any material is not elastic can be assumed to be inelastic   

   E.g.. Viscoelastic, Viscoplastic, and plastic 

 To use the measured quantities like yield strength etc. we need some 

criteria   

The criterias are mathematical concepts motivated by strong experimental 

observations  

   E.g. Ductile materials fail by shear stress on planes of maximum shear 

stress 

Brittle materials by direct tensile loading without much yielding 

 Other factors affecting material behavior 

                     - Temperature 

                                           - Rate of loading 

                                           - Loading/ Unloading cycles 



Types of Loading 



Models for Uniaxial stress-strain 

All constitutive equations are models that are supposed to 

represent the physical behavior as described by experimental 

stress-strain response  

Experimental Stress strain curves Idealized stress strain curves 

Elastic- perfectly plastic response 



Models for Uniaxial stress-strain contd. 

. 

 
Linear elastic response Elastic strain hardening response 



Models for Uniaxial stress-strain contd. 

. 

 

Rigid models 

Rigid- perfectly plastic  

response 

Rigid- strain hardening plastic  

response 



Ideal Stress Strain Curves 



Models for Uniaxial stress-strain contd. 

. 

 

4.4 The members AD and CF are made of  

elastic- perfectly plastic structural steel, and member BE 

is made of 7075 –T6 Aluminum alloy. The members 

each have a cross-sectional area of 100 mm2.Determine 

the load P= PY that initiates yield of the structure and the 

fully plastic load PP for which all the members yield. 

Soln: 

Contd.. 



Models for Uniaxial stress-strain contd. 



The Yield Criteria : General concepts 

 

 
General Theory of Plasticity defines 

Yield criteria : predicts material yield under multi-axial state of stress 

Flow rule : relation between plastic strain increment and stress increment  

Hardening rule: Evolution of yield surface with strain 

Yield Criterion is a mathematical postulate and is defined by 

a yield function   
,

( )ijf f Y

 where Y is the yield strength in uniaxial load, and is correlated with the history 

of stress state.  

Maximum Principal Stress Criterion:-                 used for brittle materials 

Maximum Principal Strain Criterion:-                 sometimes used for brittle materials 

Strain energy density criterion:-                            ellipse in the principal stress plane 

Maximum shear stress criterion (a.k.a Tresca):-  popularly used for ductile materials 

Von Mises or Distortional energy criterion:-        most popular for ductile materials  

Some Yield criteria developed over the years are: 



Maximum Principal Stress Criterion 
Originally proposed by Rankine 
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Yield surface is: 



Maximum Principal Strain 

This was originally proposed by St. Venant 
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The yield function may be defined as 
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Strain Energy Density Criterion 

. 

 

This was originally proposed by Beltrami  

Strain energy density is found as 
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Yield surface is given by 
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Maximum Shear stress (Tresca) Criterion 

. 

 

This was originally proposed by Tresca 
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Distortional Energy Density (von Mises) Criterion 

Originally proposed by von Mises & is the most popular for ductile materials 

Total strain energy density = SED due to volumetric change +SED due to distortion 
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Distortional Energy Density (von Mises) Criterion contd. 

Alternate form of the yield function  

2 2
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where the effective stress is  
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J2 and the octahedral shear stress are related by  
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Effect of Hydrostatic stress and the π- plane 

Hydrostatic stress has no influence on yielding 

Definition of a π- plane 



Alternate Yield Criteria 

    Generally used for non ductile materials like rock, soil, concrete 
and other anisotropic materials  

Mohr-Coloumb Yield Criterion 

 Very useful for rock and concretes 

 Yielding depends on the hydrostatic stress  
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Drucker-Prager Yield Criterion 
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This is the generalization of von Mises 

criteria with the hydrostatic stress effect  

included 
Yield function can be written as  



Hill’s Yield Criterion for Orthotropic Materials 

This is the criterion is used for non-linear materials 

The yield function is given by  
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General Yielding 

The failure of a material is when the structure cannot support 

the intended function 

For some special cases, the loading will continue to increase 

even beyond the initial load  

At this point, part of the member will still be in elastic range. 

When the entire member reaches the inelastic range, then the 

general yielding occurs  
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Elastic Plastic Bending 

Consider a beam made up of elastic-perfectly plastic material 

subjected to bending. We want to find the maximum bending 

moment the beam can sustain  
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Elastic Plastic Bending contd. 
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Fully Plastic Bending 

Definition: Bending required to 

cause yielding either in tension 

or compression over the entire 

cross section 
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Comparison of failure yield criteria 

For a tensile specimen 

of ductile steel the  

following six quantities  

attain their critical  

values at the same load PY 

1. Maximum principal stress                 reaches the yield strength Y 

2. Maximum principal strain                   reaches the value               

3. Strain energy Uo absorbed  by the material per unit volume reaches 

       the value                        

4. The maximum shear stress                    reaches the  

       tresca shear strength                   

5.   The distortional energy density UD reaches                        

6.   The octahedral shear stress  
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Failure criteria for general yielding 



Interpretation of failure criteria for general yielding 



Combined Bending and Loading 
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Interpretation of failure criteria for general yielding 

Comparison of von Mises and Tresca criteria 



Problem 

4.24 A rectangular beam of width b and depth h is subjected to pure  

bending with a  moment M=1.25My. Subsequently, the moment is released. 

Assume the plane sections normal to the neutral axis of the beam remain  

plane during deformation. 

a. Determine the radius of curvature of the beam under the applied bending 

moment M=1.25My 

b.    Determine the distribution of residual bending stress after the applied  

       bending moment is released 
Solution: 



Problem contd. 



Problem contd. 



Problem 

4.40  A solid aluminum alloy (Y= 320 Mpa) 

shaft extends 200mm from a bearing support 

to the center of a 400 mm diameter pulley. 

The belt tensions T1and T2 vary in magnitude 

with time. Their maximum values of the belt 

tensions are applied only a few times during 

the life of the shaft, determine the required 

diameter of the shaft if the factor of safety is 

SF= 2.20 

Solution: 
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