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Introduction

»When a material is elastic, it returns to the same state (at macroscopic,
microscopic and atomistic levels) upon removal of all external load
»Any material is not elastic can be assumed to be inelastic
E.g.. Viscoelastic, Viscoplastic, and plastic
» To use the measured quantities like yield strength etc. we need some
criteria
» The criterias are mathematical concepts motivated by strong experimental
observations
E.g. Ductile materials fail by shear stress on planes of maximum shear
stress
»Brittle materials by direct tensile loading without much yielding
» Other factors affecting material behavior
- Temperature
- Rate of loading
- Loading/ Unloading cycles
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Models for Uniaxial stress-strain

All constitutive equations are models that are supposed to
represent the physical behavior as described by experimental
stress-strain response
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Models for Uniaxial stress-strain contd.
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Models for Uniaxial stress-strain contd.

Rigid models
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Ideal Stress Strain Curves
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Models for Uniaxial stress-strain contd.

4.4 The members AD and CF are made of | 2 . d|
elastic- perfectly plastic structural steel, and member BE Lo T a

IS made of 7075 —T6 Aluminum alloy. The members 1.2m

each have a cross-sectional area of 100 mm?2.Determine | A l B c|

the load P= Py, that initiates yield of the structure and the
fully plastic load P for which all the members yield.
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Models for Uniaxial stress-strain contd.
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The Yield Criteria : General concepts

Yield Criterion is a mathematical postulate and is defined by
a yield function f=f({oy} Y)

where Y is the yield strength in uniaxial load, and is correlated with the history
of stress state.

General Theory of Plasticity defines

Yield criteria : predicts material yield under multi-axial state of stress

Flow rule : relation between plastic strain increment and stress increment
Hardening rule: Evolution of yield surface with strain

Some Yield criteria developed over the years are: _
Maximum Principal Stress Criterion:- uSed for brittle materials

Maximum Principal Strain Criterion:- sometimes used for brittle materials
Strain energy density criterion:- ellipse in the principal stress plane
Maximum shear stress criterion (a.k.a Tresca):- popularly used for ductile materials
Von Mises or Distortional energy criterion:- most popular for ductile materials



Maximum Principal Stress Criterion

Originally proposed by Rankine
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Maximum Principal Strain

This was originally proposed by St. Venant
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Hence the effective stress may be defined as

The yield function may be defined as
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Strain Energy Density Criterion

This was originally proposed by Beltrami
Strain energy density is found as
1
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Maximum Shear stress (Tresca) Criterion

This was originally proposed by Tresca

Yield function is defined as
Y
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Distortional Energy Density (von Mises) Criterion

Originally proposed by von Mises & is the most popular for ductile materials

Total strain energy density = SED due to volumetric change +SED due to distortion
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Distortional Energy Density (von Mises) Criterion contd.

Alternate form of the yield function

f=0-Y?

where the effective stress is

J, and the octahedral shear stress are related by
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Effect of Hydrostatic stress and the it- plane

Hydrostatic stress has no influence on yielding
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Alternate Yield Criteria

Generally used for non ductile materials like rock, soil, concrete
and other anisotropic materials

Mohr-Coloumb Yield Criterion
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Drucker-Prager Yield Criterion

This is the generalization of von Mises
criteria with the hydrostatic stress effect

included _ _
Yield function can be written as
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Hill’s Yield Criterion for Orthotropic Materials

This is the criterion is used for non-linear materials
The yield function is given by
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For an isotropic material
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General Yielding

The failure of a material i1s when the structure cannot support
the intended function
For some special cases, the loading will continue to increase
even beyond the initial load
At this point, part of the member will still be in elastic range.
When the entire member reaches the inelastic range, then the
general yielding o=~~~
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Elastic Plastic Bending

Consider a beam made up of elastic-perfectly plastic material
subjected to bending. We want to find the maximum bending
moment the beam can susta o ]
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Elastic Plastic Bending contd.

Ybh? (3 1 3 1
M., = S =M, 2=
=6 (2 2k2j Y(z 2k2)

(4.43)

where, M, =Ybh’ /6

as k becomes large

M., —>ng =M,




Definition: Bending required to
cause yielding either in tensior,_ [+
or compression over the entire T

Cross section

Fully Plastic Bending
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Comparison of failure yield criteria

A <
. . b
For a tensile specimen g
of ductile steel the : f= Goge length | P
follgwmg_ SIX quantities 5 1Y e-Tom il A
attain their critical o " 2 E in gage length Test specimen
values at the same load P, T
l"e""l Strain, € = ;—
1. Maximum principal stret= =R /A reaches the yield strength Y
2. Maximum principal strain  (émx = omx tBACheS the value & =YIE
3. Strain energy Uo absorbed by the material per unit volume reaches
the value u,, =Y?2/2E
4. The maximum shear stress  (r,_ =R /¥83ches the
tresca shea_tr strength (. =Y /2)
5. The distortional energy density Uy reaches U,, =Y2/6G
6. The octahedral shear stress

.. =~[2Y /3=0.471Y



Failure criteria for general yielding

TABLE 4.1 Failure Criteria for General Yielding

ntity Critical value in
Cise terms of tension test
1. Maximum principal stress
Y = P,/A

| P Y
4'—{ T S 4 }-—.’
2. Maximum principal strain

o | l— Unit length € = Y/E

S % o

3. Strain-energy density

o »
or 2°F
€

4. Maximum shear strass

ﬁ—-% Q\—\ Ty }—ﬁ

ty = Py/24 = Y/2

5. Distortional energy density
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Interpretation of failure criteria for general yielding

TABLE 4.2 Comparison of Maximum Utilizable Values of a Material Quantity According to Various Yield
Criteria for States of Stress in the Tension (a) and Torsion (b) Teats
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Maximum principal Oy = 1 O = Ty =Y
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Combined Bending and Loading

According to Maximum shear stress criteria, yielding starts when
2 2 2
T vz =Y o [2] 44 2] 1
2 2 2 Y

According to the octahedral shear-stress criterion, yielding starts when

2 2 2 2
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Interpretation of failure criteria for general yielding
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Problem

4.24 A rectangular beam of width b and depth h is subjected to pure

bending with a moment M=1.25M,. Subsequently, the moment is released.

Assume the plane sections normal to the neutral axis of the beam remain

plane during deformation.

a. Determine the radius of curvature of the beam under the applied bending
moment M=1.25My

b. Determine the distribution of residual bending stress after the applied

bending moment is released
Solution:

424@%M Al (e PrlL.l-l--lB) WM/GII'Q'S-)
M:l-'lSMy (o“')
= YILx 5
My=YIx _Lpiy (b
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B] Ego. (@) ard(b),
| M = bhY (=)
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Problem contd.
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Problem contd.
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Problem

4.40 A solid aluminum alloy (Y= 320 Mpa) 200 mm
shaft extends 200mm from a bearing support
to the center of a 400 mm diameter pulley.
The belt tensions T,and T, vary in magnitude (
with time. Their maximum values of the belt

tensions are applied only a few times during
the life of the shaft, determine the required 400 MM

diameter of the shaft if the factor of safety is T, :

|

SF=2.20
Solution:

& 40[M = 200(1800+(89) = 396,000 N.mm ;T = 200(1800-/80) = 324,000 N.mm
MC
o= SFEE = 2.20(396,000)(4X6Y) _ 8,3 Zqigoo (1Pa)

27T d¥
- cpTC _ 22032y, 000(d(32) _ 3,630,000 (M7
C= SFTE = 2200384, 000(d32 - 600,00 (/%)

4
Cnar /(G 02 = X = 322 _ 4y J(2:8222)% (3, ¢30,000)
d=32.97.7m
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